

GOES-R Series Level I Requirements Document

Presentation to NOAA Observing Systems Council (NOSC)

Abby Harper
Assistant Systems Program Director, NASA

April 3, 2007

Purpose

 To request NOSC recommendation for approval by PMC Chair of the GOES R Series Level 1 Requirements Document

Level I Requirements Document

- Documents Top-level Mission requirements approved by NOAA/DOC
- Used to assess the success of the mission
- Serves as a contract between the acquiring agency (DOC/NOAA) and the System Program Director (e.g, GOES-R) for delivery of the system
- Content:
 - Identification of top-level data requirements
 - Priority of data requirements
 - Identification of instruments required to meet requirements
 - Life Cycle Costs
 - Launch readiness dates
 - Mission Success Criteria

Activities

- September 20, 2006 NOSC meeting
 - NOSC staff presented overview of draft GOES R Series Level I,
 Final Document scope, format, content
 - NOSC requested review of Level I, Final_Draft v0.3 upon completion of GORWG review
- September 26 October 9, 2006
 - GORWG Member Comments Received
 - GORWG Comment Disposition, additional RPSI and GOES-R Program Office (GPO) comments provided
 - GORWG/RPSI/GPO incorporated into Level I, Final_Draft v0.4
 - GORWG/RPSI/GPO Comment Disposition into V0.5
- •October 10, 2006 Version 0.5 provided to NOSC members for review and comments by October 17, 2006

Activities

- •RPSI consolidated comments and generated GOES R/S Level 1, *Final_Draft* v0.6 on October 24
- •NOSC provided updated tier prioritization based on final performance capabilities.
- •GOES Program Office became document custodian for Level 1 in November
- •GORWG has:
 - Provided review and comment
- •GPO has:
 - Updated final instrumentation and high level performance (post PDRR)
 - Incorporated updated GORWG prioritization
 - Consolidated and incorporated comments
 - Incorporated cost and schedule sections

Process

- Program Definition Risk Reduction (PDRR) process utilized for:
 - development of a GOES-R Systems Concept
 - assessment of GPRD requirements against technical, cost, and schedule constraints
- GORWG provided user representation during PDRR process and during development of Level 1 requirements

Process

- GOES-R Level 1 Requirements Document is ready for approval for and serves as the top level document for the Acquisition and Operations phase
- System Design will be assessed against Level 1 at completion of System Level Preliminary Design Review

Requirements Flowdown

Changes from NOSC Reviewed Version 6

Products

- Elimination of coastal waters imagery (CWI) capability
- Legacy Sounder "equivalent" products vs. sounding products
 - Elimination of sounder
 - Analysis of Alternatives performed by Office of Systems Development to continue studies toward CWI and advanced sounding capability.
- Better reflects requirement for improved product delivery performance over GOES NOP

Systems Engineering

- Translated to requirements language
 - Removed configuration management information
 - Replaced guidance language with "shall" statements

Systems Engineering

- Product Tables added
 - GOES-R is a product driven mission
 - Tables identify primary instrument, priority tier and spatial coverage
 - Allows for clear decomposition to mission and instrument performance requirements

Programmatic

- Addition of threshold for budget and schedule control
 - Sets programmatic performance requirements in addition to technical
- Availability requirements vs number of satellites
 - Shifts to a system rather than implementation requirement - providing weather data vs how many satellites are flying

Programmatic

- Globally replaced GOES R/S with GOES-R Series
 - Provides flexibility for the program to demonstrate, via formulation process, a program architecture driven by product and availability requirements

Summary

- This document is the result of a collaborative effort between GOES-R Program Office and the GOES-R Operational Requirements Working Group
- It represents NOAA program requirements in a clear, concise manner and is ready for program execution.

Recommended Next Steps

- NOSC to provide a recommendation memo for the PMC by April 17
- Prior to KDP C/D, GPO will:
 - Conduct all reviews and obtain all concurrences needed for DUS approval
 - Obtain DUS approval

BACK-UP CHARTS

Level I Requirements Document Schedule

System Acquisition schedule shows *Preliminary* and *Final* versions of Level I documentation are generated

- Tier IA
 - Cloud and Moisture Imagery via ABI

Tier IB

- Aerosol Detection (including Smoke and Dust) via ABI
- Suspended Matter/Optical Depth via ABI
- Volcanic Ash: Detection and Height via ABI
- Cloud Top Height via ABI
- Cloud Top Pressure via ABI
- Cloud Top Temperature via ABI
- Lightning Detection via GLM
- Legacy Vertical Moisture Profile via ABI
- Legacy Vertical Temperature Profile via ABI
- Derived Stability Indices via ABI
- Total Precipitable Water via ABI
- Radiances via ABI
- Sea Surface Temperature via ABI

- Tier II
 - Cloud Imagery: Coastal via ABI
 - Cloud Liquid Water via ABI
 - Enhanced "V"/Overshooting Top Detection ABI via ABI
 - Hurricane Intensity via ABI
 - Low Cloud and Fog via ABI
 - Rainfall Rate/QPE via ABI
 - Total Water Content via ABI
 - Clear Sky Masks via ABI
 - Absorbed Shortwave Radiation: Surface via ABI
 - Downward Longwave Radiation: Surface via ABI
 - Downward Solar Insolation: Surface via ABI
 - Reflected Solar Insolation: TOA via ABI

Tier II

- Upward Longwave Radiation: Surface via ABI
- Upward Longwave Radiation: TOA via ABI
- Derived Motion Winds via ABI
- Fire/Hot Spot Characterization via ABI
- Snow Cover via ABI
- Energetic Heavy Ions via SEISS
- Magnetospheric Electrons and Protons: Low Energy via SEISS
- Magnetospheric Electrons and Protons: Medium and High Energy via SEISS
- Solar and Galactic Protons via SEISS II
- Geomagnetic Field via Magnetometer
- Solar Flux: EUV via EXIS
- Solar Flux: X-Ray via EXIS
- Solar Imagery: X-Ray via SUVI

Original GOES R Plan Requirements Prioritization – Nov 05

Tier IA - KPPs

Imagery: Cloud Imagery: Water Vapor

Tier IB

Atmospheric Radiances: IR & Vis Atmospheric Temperature: Profiles

Atmospheric Water Vapor: Profiles Cloud Top Height

Cloud Base Height Cloud Top Temperature/Pressure

Aerosol Detection Cloud Layers

Lightning Detection Solar and Galactic Protons

Solar Flux: X-Rav Solar Imagery: X-Ray/Radiance

Tier II

Tier III

Ocean Color / Optical Properties Sea Surface Temperature **Snow Cover**

Solar Insolation: Surface Longwave Radiation: Surface & TOA

Total Water Content Energetic Heavy Ions

Solar Flux: EUV Geomagnetic Field, GEO

Protons: Med & High Energy **Turbulence**

Cloud Liquid/Ice Water Path **Vegetation Index** Solar Irradiance

Surface Albedo

Ozone: Profiles

Ocean Currents

Cloud Phase

Electrons: Med & High Energy

Suspended Matter

Electrons & Protons: Low Ergy

Fire Characterization

Solar Imagery: X-Ray/Temp

Visibility/Fog

CO Concentration

Sea & Lake Ice Characteristics **Cloud Droplet Concentration**

Land Surface (Skin) Temperature Flood/Standing Water

Sea & Lake Ice: Surface Temp

Ocean Turbidity

Cloud Type

SO₂ Detection

Cloud Particle Size Distribution

Aerosol Particle Size

Sea & Lake Ice: Thickness

Cloud Optical Depth

Ozone Total